skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saha, Chinmoy Nath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This Letter reports a highly scaled 90 nm gate length β-Ga2O3 (Ga2O3) T-gate MOSFET with a power gain cutoff frequency (fMAX) of 55 GHz. The 60 nm thin epitaxial Ga2O3 channel layer was grown by molecular beam epitaxy, while the highly doped (n++) source/drain regions were regrown using metal organic chemical vapor deposition. Maximum on current (IDS,MAX) of 160 mA/mm and trans-conductance (gm) around 36 mS/mm were measured at VDS = 10 V for LSD = 1.5 μm device. Transconductance and on current are limited by high channel sheet resistance (Rsheet). Gate/drain breakdown voltage of 125 V was measured for LGD = 1.2 μm. We extracted 27 GHz current gain cutoff frequency (fT) and 55 GHz fMAX for 20 V drain bias for unpassivated devices. While no current collapse was seen initially for both drain and gate lag measurements for 500 ns pulse, moderate current collapse was observed after DC, RF measurements caused by electrical stressing. We calculated a high fT. VBR product of 3.375 THz V, which is comparable to the state-of-the-art GaN HEMTs. This figure of merit suggests that Ga2O3 could be a potential candidate for X-band application. 
    more » « less
  2. In this work, we report a study of the temperature dependent pulsed current voltage and RF characterization of [Formula: see text]-(Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 hetero-structure FETs (HFETs) before and after silicon nitride (Si 3 N 4 ) passivation. Under sub-microsecond pulsing, a moderate DC-RF dispersion (current collapse) is observed before passivation in gate lag measurements, while no current collapse is observed in the drain lag measurements. The dispersion in the gate lag is possibly attributed to interface traps in the gate–drain access region. DC-RF dispersion did not show any strong dependence on the pulse widths. Temperature dependent RF measurements up to 250 °C do not show degradation in the cutoff frequencies. After Si 3 N 4 deposition at 350 °C, a shift of the threshold voltage is observed which changed the DC characteristics. However, the current collapse is eliminated; at 200 ns pulse widths, a 50% higher current is observed compared to the DC at high drain voltages. No current collapse is observed even at higher temperatures. RF performance of the passivated devices does not show degradation. These results show that ex situ deposited Si 3 N 4 is a potential candidate for passivation of [Formula: see text]-(Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 HFETs. 
    more » « less
  3. This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices. 
    more » « less